555-1104
发布时间:2018-12-17 22:09:23点击率:
0

555-1104 机器视觉技术 自从MARR视觉计算理论提出以来,机器视觉技术迅速发展,是目前智能驾驶领域发展快的技术之一,也是智能驾驶领域研究的主要方向之一。 2.1机器视觉基本原理 获取场景中各点相对于摄像机的距离是立体视觉系统的重要任务之一,场景中各点相对于摄像机的距离可以用深度图(depthmap)来表示。机器视觉系统主要是依靠双(多)D在不同的空间位置上上获取两(多)幅图像,通过这两(多)幅图像的深度信息和成像几何来生成深度图(图1所示)。 本文以比较简单常用的双D视觉系统为例,它的几何关系如图所示。它由两个完全相同D摄像机(摄像头)构成,两个图像平面位于同一个平面上,两个摄像机(摄像头)的坐标轴相互平行,且x轴重合,摄像机之间在下x方向上的间距为极限距离B。 555-1104 其中F是焦距。 由上面推导可知各种场景中的深度信息可以通过计算视差来实现。在机器视觉系中统要能准确的计算视差,一个重要的前提就是能够找到左右图像对中投影点的共轭对(场景中同一点在不同的图像中的投影点称作共轭对),即立体匹配。匹配的方法主要有边缘特征匹配、区域特征匹配和相位匹配三类。立体配对是机器视觉里面研究的一个重要方向,在这方面有很多有用的研究成果,O.Djekoune等人在文中提出了应用神经网络的方法提高立体像对的匹配速度和准确度的新算法。 2.2机器视觉技术在智能驾驶中应用 在智能驾驶中应用机器视觉技术,机器视觉技术必须具备实时性、鲁棒性、实用性这三个特点。实时性要求机器视觉系统的数据处理必须与车辆的高速行驶同步进行;鲁棒性是要求智能车辆对不同的道路环境如高速公路、市内公路、普通公路等,复杂的路面环境如路面的宽度、颜色、纹理、弯道、坡度、坑洼、障碍与车流等,各种天气晴、阴、雨、雪、雾等均具有良好的适应性;实用性指智能车辆能够为普通用户所接受。 目前,机器视觉主要用于路径的识别与跟踪。与其它传感器相比,机器视觉具有检测信息量丰富、无接触测量和能实现道路环境三维建模等优点,但数据处理量极大,存在系统实时性和稳定性问题,要靠开发高性能的计算机硬件,研究新算法来解决。随着计算机技术和图像处理技术的飞速发展,三维重建道路环境为车辆高速智能驾驶提供强大的信息,在不远的将来具有现实可行性。 机器视觉的道路识别基本原理为,公路路面的环境(白色路标、边缘、路面颜色、坑洼、障碍物等)D图像灰度值和图像纹理、光流有差异。根据这种差异,经图像处理后可以获得需要的路径图像信息,如方位偏差、侧向偏差、车辆在道路中的位置等信息。将这些信息与车辆的动力学方程相结合,可构成车辆控制系统数学模型。 555-1104
返 回
免责声明:以上所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责,塑胶五金网对此不承担任何保证责任