CPX-FB13
发布时间:2019-03-05 09:29:39点击率:
CPX-FB13
1.2 Horn-Schunck 模型
1981年,Horn和Schunck根据同一个运动物体的光流场具有连续、平滑的特点, 提出一个附加约束条件,将光流场的整体平滑约束转换为一个变分的问题。它的能量方程如下:
其中数据项表示灰度值守恒约束,平滑项表示光流平滑约束。
1.3 Euler-Lagrange方程
根据Horn-Schunck能量方程,可以推导出离散的欧拉-拉格朗日方程如下:
其中, 表示图像像素点的坐标, 表示一个像素点的上下左右四个方向的相邻的像素点,当然,在图像的边界会少于四个元素。
1.4 超松弛迭代 (SOR)
根据上面的欧拉-拉格朗日方程,不难推到出迭代方程。这里选用收敛速度 快的超松弛算法(SOR),光流的初始值是,迭代方程如下:
其中, w是迭代的权重因子, k 是迭代的次数, 是光流的计算的权值, 表示第 个像素点的上和左的相邻像素点,表示第 个像素点的下和右的相邻像素点。
CPX-FB13
工作流程介绍
根据上面的理论分析,可以把光流法的计算划分为四个阶段:预处理阶段(P1)、梯度计算阶段(P2)、运动模型构造阶段(P3)和迭代阶段(P5),如图2所示。
2.1 预处理阶段(P1)
这一阶段是平滑处理的图像序列,它的作用是用来减少图像噪音和外部的影响,通常用卷积来实现的。这一阶段是一个通用的图像操作。
2.2 梯度计算阶段(P2)
这一阶段是用来计算平滑好的图像的梯度,包括水平梯度、垂直梯度和时间梯度。计算梯度通常也是通过卷积来实现的。
2.3 运动模型构造阶段(P3)
这一阶段是根据计算出来的梯度来构造运动模型的信息。根据超松弛公式可以推出需要构造五个运动模型的信息,即J11、J12、J13、J22、J23。它的操作就是矩阵乘法。
2.4 迭代阶段(P4)
这一阶段就是通过超松弛算法计算光流的结果,每一次迭代完了需要把光流的信息更新一遍,再作为初始值进行下一次迭代。这一阶段的操作是根据迭代公式来实现的。



